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The availability and importance of data are accelerating, and our visual system is a critical tool for
understanding it. The research field of data visualization seeks design guidelines—often inspired by
perceptual psychology—for more efficient visual data analysis. We evaluated a common guideline:
When presenting multiple sets of values to a viewer, those sets should be distinguished not just by a
single feature, such as color, but redundantly by multiple features, such as color and shape. Despite the
broad use of this practice across maps and graphs, it may carry costs, and there is no direct evidence for
a benefit. We show that this practice can indeed yield a large benefit for rapidly segmenting objects
within a dense display (Experiments 1 and 2), and strengthening visual grouping of display elements
(Experiment 3). We predict situations where this benefit might be present, and discuss implications for
models of attentional control.

Public Significance Statement
This study demonstrates that we can more efficiently pay attention to a collection of objects when
they differ from other (irrelevant) objects within multiple feature dimensions, such as color and
shape, than when they differ by only one feature, such as only color or shape. This result applies
broadly to how we attend to objects in our daily environment—it is much more typical that an object
will differ from its surrounding objects in multiple feature dimensions than a single feature
dimension. These results also apply directly to a common data visualization design technique called
redundant coding, which differentiates groups of data points by multiple features, such as a
scatterplot with red triangles, blue circles, and green squares.
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The world is noisy. To extract or communicate a signal, we
often need to integrate multiple sources of information. Airline
pilots replace individual letters with words, like Foxtrot, Romeo,
or Tango, to introduce redundant information about letters that

they want to communicate when transmitting voice messages.
Drummers in sub-Saharan Africa use a similar system when send-
ing messages, by relying on sets of familiar “chunks” of pattern
that allow noisy messages to be recovered across long distances
(Gleick, 2011). Most packets of information sent across a network
add additional bits that help detect, or even correct, introduced
errors. But while such redundant encoding can strengthen signal
among noise, in low-noise environments it might be inefficient or
even distracting.

Here we test for potential benefits of redundant encoding in the
visual analysis of data. The human visual system is well positioned
for data analysis, because its parallel architecture allows broad
processing of information and computation of elementary statis-
tics, such as means, maxima, and distributions (Szafir, Haroz,
Gleicher, & Franconeri, 2016; Haberman & Whitney, 2012),
across data values encoded by visual dimensions, such as position,
color, or shape (Munzner, 2014). But like other information pro-
cessors, the visual system faces noisy representations. Notably,
when performing visual statistics on certain sets of values—de-
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fined by being red, or circular—isolating the relevant points be-
comes increasingly difficult in more complex displays (Duncan &
Humphreys, 1989).

A common strategy for improving signal among noise is to use
redundant features (e.g., red and circular) to encode sets of values.
Figure 1 illustrates this practice across visualizations intended for
various audiences, such as researchers (Figure 1a), consumers
(Figure 1b), and the general public (Figure 1c). Figures 1d–1f
present similar examples from psychology articles of the past 3
years, showing the use of redundant encoding across depictions of
data with widely varying complexity. Redundant encoding is the
default setting for the construction of graphs in Microsoft Excel
(Figure 1a), a core part of a software package used by over 1.1
billion people (Microsoft, 2014). Across these examples, redun-
dant encoding might be beneficial—it might help further percep-
tually segregate different collections, help link legends to data, or
enhance memory for relationships.

But redundant encoding also might convey little or no benefit,
with the risk of increasing display complexity. Observers might be
left confused about which dimension is relevant when linking
legends to data, or whether the independent dimensions reflect
different aspects of the data. Visual designers strive to strip away
unnecessary variation in visual displays, which can lead to confu-
sion and an inelegant appearance (Williams, 2014). In the data
visualization literature, influential voices argue that elegant and
understandable data presentations should omit unnecessary embel-
lishment as much as possible (Few, 2012; Tufte, 1983), and that
redundancy can occasionally be helpful under specific conditions,
but is often gratuitous (Tufte, 1990).

Here we investigate whether redundant encoding can confer a
benefit when one simultaneously attends to a set of objects. There

are a number of related findings that suggest it could be beneficial
in this case. Some studies show that classifying a single object is
faster or more accurate when redundant information is available.
When people are asked to make a speeded key press to indicate
whether they are presented with at least one of two possible targets
(e.g., Please press a key if you see an asterisk or hear a tone), they
are faster when both targets appear (Miller, 1982). When people
are asked to classify an object’s size, color, or position into a set
of predefined magnitude categories (e.g., the “second biggest”
type), performance is better when categories can be judged by
redundant information from multiple dimensions (Eriksen & Hake,
1955; Lockhead, 1966; Egeth & Pachella, 1969). There are similar
redundancy benefits when participants sort values into a dimen-
sional ordering, even when they are instructed to sort along a
single dimension (Morton, 1969; Garner, 1969; Biederman &
Checkosky, 1970).

While these examples are cited in data visualization textbooks
as the best available argument for the benefits of redundant en-
coding (e.g., Ware, 2013), these tasks do not reflect the demands
of judging collections of objects, as is often the case in visual data
displays. Previous work requires precise categorization of the
value of a single stimulus along a dimension (e.g., Is this the
second reddest?), amid closely spaced alternative values (e.g.,
there might be another possible red with a touch of orange). In
contrast, we do not know whether a redundancy benefit would
extend to visual data displays requiring selection of the value of
one collection of objects (e.g., Pick out the bright ones), with
widely spaced alternative values (e.g., red, green, or blue).

Another set of related findings comes from the visual search
literature, showing that redundant encoding of target identity can
help participants find single targets more quickly. Visual searches

Figure 1. Top row: Redundant encoding is ubiquitous across chart types, such as (a) scatterplots, (b) tables, and
(c) choropleth maps. Bottom row: Redundant encoding examples from recent articles in psychology journals.
This technique has been used in (d) simple, (e) moderately complex, and (f) dense displays. Examples are taken
from (d) Slatcher, Selcuk, & Ong (2015), (e) Lynn and Barrett (2014), and (f) Harrison et al. (2013). See the
online article for the color version of this figure.
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are faster when pop-out targets are redundantly encoded by color
and shape (e.g., Find the red diamond among green squares) than
when they are coded by only one dimension (e.g., Find the red
square, or the green diamond, among green squares; Krummen-
acher, Müller, & Heller, 2001). Furthermore, searching for triple
conjunctions (e.g., Find a single small red X among stimuli that
otherwise vary in size, color, and shape) can in some cases be
easier than finding double conjunctions of the same features
(Wolfe, Cave, & Franzel, 1989), though these particular encodings
are not redundant, because each dimension carries additional in-
formation about target status. But it is again unclear that these
findings reflect the demands of perceiving sets of objects. Criti-
cally, both these studies and the previous set of categorization
studies require participants to categorize or locate single stimuli.
While this might reflect the demands of a subset of tasks (e.g.,
finding a data point that fits certain criteria), data displays often
require observers to select an entire collection of objects in order
to segment one data category from another (e.g., What is the shape
of the collection of red values? What is its distribution? What is the
general location of the collection?). In fact, this type of segmen-
tation of collections is argued to follow different rules compared to
parallel visual for single targets (Wolfe, 1992).

These more holistic judgments apply to a wide variety of data
displays, such as scatterplots (Figure 1a), choropleth maps (Figure
1c), or matrices of correlations. Such holistic judgments are likely
supported by feature-based attention. Color, luminance contrast,
shape, orientation, and motion direction are broadly processed
across the visual field (Treisman & Gormican, 1988), and the
visual system can in many cases selectively filter information from
one value along these dimensions (Sàenz, Buraĉas, & Boynton,
2002, 2003). In Figure 1, a viewer can estimate the center point of
Group 1 by selecting blue (Figure 1a), or the distribution of
software features in a table (Figure 1b) or populations on a map
(Figure 1c).

Feature-based attention spreads widely across the visual field
(Sàenz et al., 2002; but see Leonard, Balestreri, & Luck, 2015),
and can amplify a given visual feature within the first 100 ms of
the appearance of a display (Zhang & Luck, 2009). Can feature-
based attention select two values along different dimensions at the
same time? Some results show that second dimensions that are
irrelevant, or even interfering, are nonetheless selected. When
participants are asked to segment two collections of symbols that
differ in one dimension (e.g., color), irrelevant differences along
another dimension (e.g., shape) can interfere with performance
(Callaghan, 1984, 1989). Another study used brain imaging to
show that when participants attended to one of two superimposed
fields of dots that differed by task-relevant (color) and task-
irrelevant (motion direction) dimensions, there was greater activity
to an unattended dot group in the opposite visual field when its
motion direction matched the task-irrelevant second dimension
within the attended field, suggesting that it was selected anyway
(Lustig & Beck, 2012). These results suggest that feature-based
attention is capable of selecting two values from two dimensions at
once. But does selection of multiple dimensions actually help in
this context—can it help when inspecting a collection of objects?

One surprising recent result from the information visualization
literature suggests that, in the context of a simulated real-world
task, redundant encoding offers no advantage whatsoever
(Gleicher, Correll, Nothelfer, & Franconeri, 2013). Participants

were shown scatterplots containing two “point clouds” of data
(similar to Figure 1a, but with 50 points per collection), and were
asked to judge which data group had the higher average. Perfor-
mance was no different when judging collections that differed by
color alone (orange vs. purple), or shape alone (circles vs. trian-
gles), compared to judging collections that were redundantly en-
coded (orange circles vs. purple triangles). However, there are a
number of reasons for why this study may have failed to find a
redundancy benefit (see Conclusion).

In summary, no existing study has demonstrated a benefit from
redundant encoding of a collection of objects, as is often the case
in real-world displays. There is evidence from the dimensional
categorization and visual search literatures that redundancy can be
helpful in some visual tasks, but those tasks differ from the present
ones in critical ways. While some work shows that the visual
system is capable of selecting two values in two dimensions at
once, one recent study found no benefit for redundant encoding in
a simulated data display task. In Experiments 1 and 2, we tested for
a benefit of redundant encoding in a new type of real-world display
meant to simulate the requirements of interpreting a large class of
visual representations of data. In Experiment 3, we tested for a
similar benefit in an established test of visual grouping strength.

Experiment 1

Data visualizations often require the observer to judge the shape
of the distribution of a collection, whether they are points in a
graph, values in a chart, or glyphs on a map (see Figure 1). Where
are the outliers, clumps, and regions of greater or lower concen-
tration? We constructed an abstracted task designed to emulate
such judgments, requiring the participant to select a collection of
objects holistically in order to judge its shape envelope of the
collection (see Figure 2a), by reporting the quadrant of the display
that was missing elements of a given color or shape. Three differ-
ent sets of redundant visual features (Experiment 1a: blue or
asterisk; Experiment 1b: blue or circle; Experiment 1c: red or
triangle) were used to test for generalizability.

Because we were interested in whether redundant encoding
improves performance for “in-a-glance” decisions—as opposed to
slow and serial inspection over the course of several seconds—we
use a brief presentation time (around 90 ms on average; see
below). Despite using a brief presentation, we simulated the ex-
perience a viewer should have from previous experience with a
specific display (including knowledge of the relevant and irrele-
vant features within it) by showing a preview screen depicting the
objects to be judged, and ignored, before every trial, which should
improve overall performance (Wang, Cavanagh, & Green, 1994).

Method

Participants. We recruited 44 Northwestern University stu-
dents and community members (ages 18 to 28; Experiment 1a: 12
subjects (one was author C.N.); Experiment 1b: 16 subjects; Ex-
periment 1c: same 16 subjects from Experiment 1b) in exchange
for course credit or payment.

Stimuli. Stimuli were created using MATLAB (The Math-
Works, Natick, MA) and the Psychophysics Toolbox (Brainard,
1997), and presented on a 32 � 24 cm CRT monitor (75-Hz
refresh rate, 1,024 � 768 resolution). All visual angles were
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calculated assuming a typical distance of 40 cm from the monitor.
Ninety-nine objects were arranged across a medium gray screen in
a 9 � 11 grid with square cells 3 visual degrees in diameter,
centered on a black fixation cross (Figure 2a). Each object spanned
1.0–1.5 visual degrees in diameter. Each object’s x and y coordi-
nates were jittered by �0.6 visual degree for each trial. Eleven
targets formed a partial ring embedded among 88 distractor ob-
jects. The ring was always missing five adjacent target elements,
restricted to one quadrant of the screen and replaced with ran-
domly picked (without replacement) objects from the set of avail-
able distractors. Target objects were always presented in the same
location (prior to jittering) for a given missing quadrant trial type
(e.g., the location of the targets in the top-left-quadrant-missing
color trials was the same as that in redundant trials where the same
quadrant is missing). Objects in Experiments 1a–1c were orange,
red, purple, blue, and green. Colors were approximately perceptu-
ally equiluminant, as determined by a separate experiment (see the
online supplemental materials). Experiment 1a used plus signs,
triangles, squares, asterisks, and circles, whereas Experiments 1b
and 1c used only triangles, squares, and circles.

Target objects were identical to each other, and differed from
distractors in color only (color trials), shape only (shape trials), or
in both color and shape dimensions (redundant trials). Targets

were always the same color, shape, or both through the entire
experiment (Experiment 1a: blue or asterisk; Experiment 1b: blue
or circle; Experiment 1c: red or triangle; e.g., targets were always
blue in color trials, asterisks in shape trials, and blue asterisks in
redundant trials in Experiment 1a). Distractors in color and shape
trials consisted of every remaining feature value in the relevant
feature dimension, and were identical in the irrelevant feature (e.g.,
a color trial with blue circle targets would have orange, red, purple,
and green circle distractors; a shape trial with red asterisk targets
would have red triangle, square, circle, and plus sign distractors).
Redundant trials in Experiment 1a used unique color–shape pairs
for all distractors (blue asterisk targets among orange plus sign, red
triangle, purple square, and green circle distractors). Because Ex-
periments 1b and 1c used fewer shapes than colors, shape and
color were randomly and independently assigned to each distractor
in redundant trials (e.g., Experiment 1b presented blue circle
targets among orange triangles, orange squares, red triangles, red
squares, purple triangles, purple squares, green triangles, and green
squares), but the total number of shapes and colors used on these
trials remained consistent. Experiments 1b and 1c used fewer
shapes because pilot experiments revealed that if participants at-
tend to circular and triangular targets, respectively, there need to
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Figure 2. (a) Experiment 1’s design. Stimuli shown here are from Experiment 1a and are not drawn to scale.
Participants saw a preview screen (left column; until response), followed by a fixation cross (1,000 ms), and test
display (center column; staircased display time). Trials concluded with a mask screen (right column) until
participants indicated which quadrant was missing from the ring of target objects (all trials shown here; correct
answer: bottom left). Target objects differed from distractors either by color (top), shape (center), or color and
shape redundantly (bottom). (b) In Experiment 3, participants first viewed a fixation screen, followed by the test
display until response. Displays contained objects pairs which differed by luminance (top), shape (center), or
both luminance and shape (redundant; bottom). See the online article for the color version of this figure.
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be fewer distractor shapes (less heterogeneity) in order for perfor-
mance to be above chance.

Preview screens featured the target object for the given trial at
the center of a medium gray screen, beneath a black fixation cross,
and surrounded by the subsequent distractor objects on an imagi-
nary circle. The mask screen was a grid of 52 � 45 adjacent
repeating orange, red, purple, green, blue, and green rectangles that
filled the screen. The fixation screen consisted of a black cross at
the center of a medium gray screen.

Procedure. Participants viewed the preview screen and re-
sponded with the space bar to continue after viewing that trial’s
target object. A fixation screen appeared for 1,000 ms, followed by
the stimulus display for a variable amount of time, and the mask
screen until response (the 1, 2, 4, and 5 keys on a number pad
covered with stickers showing the appropriate portion of a circle in
the corresponding key location—e.g., the bottom left quadrant of
a circle was placed on the bottom left [1] key). Participants were
instructed to indicate the quadrant of the screen where the target
object ring was missing elements. To encourage simultaneous
visual selection of target objects, participants were asked to attend
to all of the targets at once rather than attempting to check each
quadrant serially for missing targets, because the stimulus display
would flash only briefly. Participants were told to fixate through
the entire trial after studying the preview screen until they saw the
mask. The trial concluded with a blank medium gray screen
presented for 200 ms after response.

Factors in the fully crossed design included: feature condition
(color, shape, redundant), irrelevant features for color and shape
trials (color trials used objects of all the same shape from the set
of five [Experiment 1a] or three [Experiments 1b and 1c] possible
shapes; shape trials used objects of all the same color from a set of
five possible colors), and gap condition (gap in the target ring
appeared in the top left, top right, bottom left, or bottom right
quadrant). Because color and shape trials needed to display every
possible irrelevant feature, these conditions had 5 times more types
of unique trials than redundant trials in Experiment 1a. In light of
this, redundant trials were repeated more often to maintain the
number of trials within each feature condition (120 trials each). All
possible color and shape trials were repeated six times (five
possible irrelevant features, four gap conditions, six repetitions,
yielding 120 trials per condition) while redundant trials were
repeated 30 times (four gap conditions, 30 repetitions, yielding 120
trials), resulting in a total of 360 trials. The results were the same
when examining the first half of the trials within each feature
condition, so Experiments 1b and 1c each had a total of 180
experiment trials. Because these experiments had only three pos-
sible shapes, color trials were repeated five times (three possible
irrelevant shapes, four gap conditions, and five repetitions yielded
60 trials), shape trials were repeated three times (five possible
irrelevant colors, four gap conditions, and three repetitions yielded
60 trials), and redundant trials were repeated 15 times (four gap
conditions and 15 repetitions yielded 60 trials).

Participants first completed 12 unrecorded practice trials in
which the stimulus was presented for 200 ms. This was followed
by 36 calibration trials (extra trials, randomly selected from the set
of test trials) in which the display time of the stimulus (starting at
200 ms) was increased by 8 ms after incorrect answers or de-
creased by 4 ms for correct answers. This ratio allowed display
time to staircase, automatically producing performance halfway

between chance (25%) and ceiling (100%). Calibration trials were
excluded from analysis unless otherwise noted. For the remaining
test trials, display time was instead increased by 2 ms after incor-
rect answers, or decreased by 1 ms for correct answers. Averaged
across the three experiments, mean display time was 89 ms (SD �
32 ms), measuring from the last 50 trials of each participant. Trials
were randomly ordered within each block (practice, calibration,
test trials).

Results and Discussion

Some participants were removed from the analysis due to an
average display time (including calibration trials) greater than 200
ms (the starting staircase time) or because the standard deviation of
the final 100 trials’ display time exceeded 20 ms (Experiment 1a:
one removed; Experiment 1b: three removed; Experiment 1c: two
removed). One additional participant was removed from Experi-
ments 1b and 1c due to an inability to remain alert throughout the
experiment.

Figure 3 shows accuracy results for Experiments 1a–1c. If
attending to objects encoded by multiple dimensions yields better
visual selection and subsequent global shape detection, then par-
ticipants should be most accurate in the redundant condition.
Indeed, accuracy was highest for redundant trials (Experiment 1a:
M � 92.3%, SD � 4.7%; Experiment 1b: M � 86.5%, SD � 4.3%;
Experiment 1c: M � 84.5%, SD � 6.4%). Accuracy values were
submitted to a repeated-measures analysis of variance (ANOVA;
degrees of freedom were Greenhouse-Geisser corrected for
sphericity violations), revealing a main effect of feature condi-
tion, Experiment 1a: F(1.12, 11.16) � 26.64, p � .001, �p

2 �
0.73; Experiment 1b: F(1.31, 14.42) � 40.88, p � .001, �p

2 � 0.79;
Experiment 1c: F(1.08, 13.00) � 12.54, p � .003, �p

2 � 0.51.
Redundant accuracy was significantly higher than whichever con-
dition—color or shape—was better for each participant (average
accuracy for participants’ best condition [color or shape]— Ex-
periment 1a: M � 71.4%, SD � 2.2%; Experiment 1b: M �
71.7%, SD � 7.3%; Experiment 1c: M � 71.4%, SD � 8.9%), as
confirmed by two-tailed t tests, Experiment 1a: t(10) � 11.74, p �
.001, d � 3.54; Experiment 1b: t(11) � 5.50, p � .001, d � 1.59;
Experiment 1c: t(12) � 5.50, p � .001, d � 1.52. Thus, visual
selection benefited from objects encoded by multiple, redundant
features than by either feature alone. See the online supplemental
materials for additional analyses.

There are two possible models for how the present redundancy
benefit operates. According to a combination model, information
from both color and shape dimensions of the redundant targets
contribute activation toward a participant’s response. Alterna-
tively, a race model specifies that color and shape dimensions of
redundant targets provide independent sources of information that
are never to be combined, and whichever is detected first contrib-
utes toward the participant’s response on any given trial. Related
redundancy gain work has discussed this issue extensively, partic-
ularly examining response time distributions rather than response
time means (e.g., Miller, 1982; Mordkoff & Yantis, 1993; see
Townsend, 1990, for a review of approaches disentangling the two
models).

Within a race model, if our participants are unaware of which
feature is more reliable, they should make their decisions based on
an arbitrarily chosen feature. If this is the case, accuracy in the
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redundant condition —if the two features are not integrated—
should range from p(s) (if the participant always chooses shape),
[p(s) � p(c)]/2 (if they randomly choose either feature from trial to
trial), to p(c) (if the participant always chooses color). Conversely,
if participants know which feature is more reliable, they should
always choose that feature in making their decisions. In this case,
the accuracy in the redundant condition should be equivalent to the
greater accuracy of the two features, that is, whichever is greater
between p(s) and p(c). Because the actual accuracy in the redun-
dant condition is significantly larger than either of these estimates
based on separate processing of the two features, the result sug-
gests that shape and color are integrated.

Consistent with this result, Grubert, Krummenacher, & Eimer
(2011) have shown that the redundancy advantage arises even at
early stages of attentional allocation, as demonstrated by an earlier
N2pc onset to redundant versus single dimension trials in a pop-
out visual search task. Furthermore, Krummenacher et al. (2001)
showed that response times for redundant pop-out targets support
a combination model (though only when trials are blocked by
pop-out feature, attributing this to single-feature trials (e.g., a color
trial) attracting weight away from the feature map of the other
single-feature (e.g., orientation) on a subsequent redundant trial,
resulting in a weaker synergy effect of the two features).

Experiment 2

Experiment 1 provided participants with a preview of the target
object and distractor objects, which allowed participants to infer
how many features would distinguish targets from distractors in
the subsequent screen. For example, in the color trial preview
depicted in Figure 2a, participants could have determined that they
only need to attend to the color blue, since both target and
distractor objects are circles. Thus, participants could have pre-
pared to attend to only one feature in color and shape trials, while

preparing to attend to both color and shape in redundant trials. To
ensure that differences in these preparation strategies cannot ac-
count for the redundant encoding advantage, the preview specified
the color and shape of the target, omitting descriptions of the
distractor objects for the upcoming trial so that participants would
not know if an upcoming display would contain a redundant
encoding of the target. In addition, to test whether redundant
encoding can control feature-based attention in a rapid presenta-
tion where the feature had not already been visually primed (see
Zhang & Luck, 2009, for a test of this idea using single-feature
dimensions), the target was described not by an image, but by
printed text that identified a single shape and color (e.g., “blue
circle”).

Method

Participants. We recruited 31 Northwestern University stu-
dents and community members (ages 19 to 31; Experiment 2a: 15
subjects; Experiment 2b: 14 subjects from Experiment 2a, plus 2
more subjects) in exchange for course credit or payment.

Stimuli. Stimuli in Experiments 2a and 2b were the exact
same as those in Experiment 1b (target object: blue/circle) and
Experiment 1c (target object: red/triangle), respectively, except for
the preview screen. Preview screens featured the color and shape
of target object, written out, for the given trial (e.g., “blue circle”).
The black, lowercase text appeared on a single line at the center of
a medium gray screen, spanning 4.3–6.8 visual degrees wide and
1.1 visual degrees tall.

Procedure. The procedure was the exact same as in Experi-
ment 1.

Results and Discussion

One participant from Experiment 2a was removed from the
analysis due to an average display time (including calibration
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Figure 3. Experiments 1–3 results. The graph shows accuracy in each of three conditions across five
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minus within-group response times) for Experiment 3). Error bars indicate within-subject standard errors of the
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trials) greater than 200 ms (the starting staircase time). No partic-
ipant’s standard deviation of the final 100 trials’ display time
exceeded 20 ms.

Figure 3 shows accuracy results for Experiments 2a–2b. As with
Experiment 1, if attending to objects encoded by multiple dimen-
sions yields better visual selection and subsequent global shape
detection, then participants should be most accurate in the redun-
dant condition. Indeed, accuracy was highest for redundant trials
(Experiment 2a: M � 87.6%, SD � 6.1%; Experiment 2b: M �
86.3%, SD � 6.3%). Accuracy values were submitted to an
ANOVA, revealing a main effect of feature condition, Experiment
2a: F(1.43,18.56) � 40.99, p � .001, �p

2 � 0.76; Experiment 2b:
F(1.35,20.24) � 37.99, p � .001, �p

2 � 0.72. Specifically, redun-
dant accuracy was significantly higher than whichever condition—
color or shape—was better for each participant (average accuracy
for participants’ best condition (color or shape)—Experiment 2a:
M � 67.1%, SD � 8.0%; Experiment 2b: M � 71.0%, SD �
7.8%), as indicated by a two-tailed t test, Experiment 2a: t(13) �
8.65, p � .001, d � 2.31; Experiment 2b: t(15) � 6.01, p � .001,
d � 1.50. See the online supplemental materials for additional
analyses.

Visual selection benefited from attending to objects encoded by
multiple, redundant features than by either feature alone. Partici-
pants approached each trial with the same type of knowledge due
to the nature of the preview, and thus should have approached
color, shape, and redundant trials with the same strategy. Because
a redundancy benefit arose even when participants did not know
whether which feature—or both—would be useful in distinguish-
ing the target collection from the distractors, these data rule out
any pre-trial differences in strategy as the root cause of the redun-
dancy advantage. This is also apparent because performance on
color and shape trials would have been lower if participants
attended to only one of the features presented in the preview (e.g.,
attending to only to only color would lead to worse performance
on shape trials); single-dimension trial accuracies here are similar
to those in Experiment 1. Participants’ average display time of the
last 50 trials (Experiment 2a: M � 104 ms, SD � 33 ms; Exper-
iment 2b: M � 97 ms, SD � 31 ms) were similar to those in
Experiment 1 (Experiment 1b: M � 96 ms, SD � 23 ms; Exper-
iment 1c: M � 78 ms, SD � 28 ms).

Experiment 3

Experiments 1 and 2 showed that participants were better able to
perceive objects’ global shape when encoded by redundant fea-
tures than either feature alone. Experiment 3 explored whether this
benefit generalizes to other tasks. We used the repetition discrim-
ination task (Palmer & Beck, 2007), which assesses the strength of
a grouping cue. Specifically, we tested grouping by luminance
similarity, shape similarity, and luminance combined with shape
similarity. This task differed from that in Experiments 1 and 2 in
several key ways: (a) a longer time scale (hundreds of millisec-
onds), (b) a different dependent measure (response time), (c)
continuously, versus discretely, different features, and (d) a target
that is not directly tied to the presence of the redundant features.
We expected that grouping features would combine such that
redundant encoding would produce a stronger effect than either
grouping feature alone in this task, whether demonstrated by

interference (between-groups trials) or stronger grouping (within-
group trials).

Method

Participants. We recruited 17 Northwestern University stu-
dents and community members (ages 18 to 29) in exchange for
course credit or payment.

Stimuli. Each display consisted of seven objects, each 2.9
visual degrees wide, arranged horizontally with 0.7 visual degree
between each object on a black screen (Figure 2b). There were
always three or four objects to the left of the center of the screen
and four or three objects to the right, respectively. Luminance trial
objects were the same shape but one of two luminances (light
green and dark green), shape trial objects were the same luminance
but one of two shapes (square and square with a concave top and
bottom, which will be referred to as curved squares), and redun-
dant trial objects were one of two luminance–shape combinations
(light green square and dark green curved square, or dark green
square and light green curved square). Pairs of adjacent objects
were identical in the variable feature (e.g., luminance in luminance
trials), which alternated between object pairs (e.g., two light green
squares, followed by two dark green squares, followed by two light
green squares). The outermost object on the side of the screen with
four objects was always unpaired. On top of each shape was a
black H or A, always white-outlined to maintain contrast despite
changes in object luminance across trials. Hs and As differed only
in that As had an additional connecting line across the top. The
letters alternated, except there was always one repetition of one of
the letters (e.g., H A H H A H A), which occurred in one of any
six possible locations within a display. Critically, as shown in
Figure 4a, the repeated letters were either on a pair of matching
features (e.g., H on a dark green square next to another) or between
adjacent pairs (e.g., H on a dark green square next to an H on a
light green square). The fixation display consisted of a white cross
at the center of a black screen.

Procedure. The factors included similarity grouping cue (lu-
minance, shape, or redundant combination of luminance and
shape), object arrangement (three objects left, four objects right of
screen center; four objects left, three objects right of screen cen-
ter), irrelevant dimension for all objects (squares or curved squares
for luminance trials; dark green or light green for shape trials; not
applicable for redundant trials), relevant feature of leftmost object
(light green or dark green for luminance trials; square or curved
square for shape trials; light green square or dark green curved
square or dark green square or light green curved square for
redundant trials), repeating letter (A or H), and location of repeat-
ing letter (object positions 1–2, 2–3, 3–4, 4–5, 5–6, or 6–7). There
were 288 trials, half of which contained the letter repetition within
a pair of matching objects (within-group trials), half between
adjacent pairs (between-groups trials).

Participants indicated which letter, A or H, repeated, by using
the V and B keys covered with A and H stickers, respectively. They
were asked to respond as quickly as possible while keeping their
error rate under 5%. After participants viewed a fixation screen for
500 ms, the test display was presented until response. After 24
unrecorded practice trials, test trials were done in eight blocks of
36 trials, lasting 10–15 min.
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Results and Discussion

Following Palmer and Beck (2007), two participants were re-
moved from the analysis for overall accuracies less than 95%.
Figure 4b shows participants’ median response times to within-
group and between-groups letter repetitions in objects grouped by
luminance, shape, and both luminance and shape (redundant).
Figure 3 shows the same data plotted as the within-group response
time advantage (between-groups response times minus within-
group response times) for Experiment 3. In the repetition discrim-
ination task, the difference in response time between the between-
groups and within-group trials is interpreted as the strength of the
grouping effect. If similarity grouping is indeed stronger when
using redundant features rather than individual features, then re-
dundant trials should show a greater response time difference
between between-groups and within-group trials than luminance
and shape trials.

Replicating Palmer and Beck (2007), an ANOVA on partici-
pants’ median response times revealed a main effect of letter
repetition within/between-groups location, F(1, 14) � 101.93, p �
.001, �p

2 � 0.88. Specifically, participants were significantly
slower when the letter repetition was between groups (M � 1,280
ms, SE � 42 ms) than within groups (M � 985 ms, SE � 26 ms),
all ts(14) � 5.00, ps � 0.001, ds � 1.30, for each similarity
grouping cue (luminance: between-groups M � 1,182 ms, SD �
148 ms, within-group M � 1,025 ms, SD � 132 ms; shape:
between-groups M � 1,202 ms, SD � 177 ms, within-group M �

971 ms, SD � 110 ms; redundant: between-groups M � 1,456 ms,
SD � 190 ms, within-group M � 958 ms, SD � 101 ms; all
depicted in Figure 4b). There was also a main effect of similarity
grouping cue, F(2, 28) � 23.34, p � .001, �p

2 � 0.63, such that
participants were slowest on redundant trials, slower than lumi-
nance trials, t(14) � 	5.80, p � .001, d � 	1.50, and shape trials,
t(14) � 	5.93, p � .001, d � 	1.53, and no significant difference
between luminance and shape trials, t(14) � 0.88, p � .250, d �
0.23. While participants were slowest on redundant trials, this
main effect was driven by slow between-groups performance—
participants were significantly slower on redundant between-
groups trials than luminance between-groups trials, t(14) � 10.80,
p � .001, d � 2.79 and shape between-groups trials, t(14) � 7.90,
p � .001, d � 2.04, whereas performance on redundant within-
group trials was faster than that of luminance within-group trials,
t(14) � 	2.31, p � .037, d � 	0.60, and no different from
performance on shape within-group trials, t(14) � 	0.59, p �
.566, d � 	0.15.

Critically, we found a significant interaction between letter
repetition within/between-groups location and similarity grouping
cue, F(2, 28) � 50.07, p � .001, �p

2 � 0.78. Specifically, as shown
in Figure 3, the within-group response time advantage was greater
for redundant trials (M � 498 ms, SD � 177 ms) than for
luminance trials (M � 156 ms, SD � 114 ms), t(14) � 	8.26, p �
.001, d � 	2.13, and shape trials (M � 231 ms, SD � 116 ms),
t(14) � 	7.04, p � .001, d � 	1.82. The within-group response
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Figure 4. (a) Example of stimuli for Experiment 3 (not drawn to scale). Each display contained objects pairs
which differed by luminance, shape, or both luminance and shape (redundant). Participants indicated which
letter, A or H, repeated in the display, unpredictably appearing either within or between object groupings.
Performance was expected to be worse for between-groups trials. If redundant grouping cues can be combined,
participants should be slowest on between-groups redundant trials (sixth row). (b) Results for Experiment 3. The
graph shows response time for each of three similarity grouping cues (luminance, shape, redundant), depending
on whether the letter repetition occurred within or between object pairs. Note that the difference between the last
two bars (redundant condition) is larger than the difference between either of the first two sets of bars (these
differences are explicitly plotted in Figure 3). Error bars represent within-subject standard errors of the mean.
See the online article for the color version of this figure.
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time advantage was also greater for shape than luminance trials,
t(14) � 	2.79, p � .015, d � 	0.72. The within-group response
time advantage was also significantly greater for redundant trials
than whichever single grouping cue (luminance or shape) pro-
duced the greatest response time difference for each subject (M �
245 ms, SD � 109 ms), t(14) � 	6.89, p � .001, d � 	1.78.
Thus, similarity grouping is stronger when objects are similar on
redundant features than when similar by only a single feature.

We had no a priori prediction for whether redundant encoding
would produce a stronger grouping effect via interference (slower
performance on between-groups trials), stronger grouping (faster
performance on within-group trials), or both. Our results suggest
that redundancy could produce increases in interference, but only
marginal strengthening of grouping. It is possible that redundant
encodings might not make objects easier to attend to, but instead
harder to ignore. However, it is also very possible that perfor-
mance in the within-group condition was already at effective
ceiling.

Conclusion

The present data provide the first empirical demonstration that
redundant encoding of objects can be beneficial to viewers of
visual data displays. Experiments 1 and 2 presented participants
with a brief display designed to mimic a dense data visualization,
and asked them to report the display quadrant that was missing
objects of a specified color and shape. Performance was substan-
tially better when a collection was redundantly specified by both
color and shape, regardless of whether participants knew the
collection’s encoding type before each trial. This advantage was
echoed in response times (see the online supplemental materials),
and was present even when comparing redundant encoding with
each participant’s best single dimension. Experiment 3 replicated
a similar benefit by showing that redundant encoding of visual
groups created stronger effects within a measure of visual group-
ing. These results apply directly to the redundant encoding design
technique used in data visualization, but also more broadly to how
we attend to objects in our daily environment—it is much more
typical that an object will differ from its surrounding objects in
multiple feature dimensions than a single feature dimension.

While the present results show that redundancy can be benefi-
cial, there are many open questions surrounding when it will have
a benefit. Our displays balanced the relative signal strength of each
dimension, but when one dimension, such as color, is more easily
discriminable, adding shape differences will likely not yield a
redundancy advantage. Our dimensions were also generally easily
discriminable, but it is unclear whether a redundancy benefit
would be even stronger in cases with less perceptually salient
differences between data groups (e.g., such as graphs with many
data groups, which use increasingly less perceptually salient fea-
ture differences as more data groups are added). In addition, while
our displays contained well-spaced points, some real-world dis-
plays may contain objects that are more densely spaced and even
overlapping points—it is unclear whether redundant coding would
still help here. If redundancy operates by reducing noise within the
attended collection, then the type of task may also matter: The
display segmentation task in Experiment 1 may be especially
affected by noise, but other tasks may not. In fact, we suspect that
the lack of redundancy benefit in past work (Gleicher et al., 2013,

which also carefully balanced the signal strength between dimen-
sions) is due to the use of a noise-resistant task: estimation of the
center of a cloud of points. Adding substantial noise to the position
representation of each point should barely affect the mean position
judgment, which should average over such noise. But there were
other differences between that study and the present one that could
also explain the differing results, including longer display dura-
tions (several seconds), a different population and testing environ-
ment (online experiments using Mechanical Turk), and displays
with less heterogeneity of distracting colors and shapes.

The differences in results between the past and present study
light a path to a broader set of studies exploring how people
interpret these types of visual displays. What are the processing
bottlenecks on different types of visual decisions, and what stages
of processing describe how people inspect such complex displays
over time? Candidates include determining the possible features to
select by inspecting a first “statistical snapshot” of the features
available (Szafir et al., 2016; Haberman & Whitney, 2012), using
top-down control of feature- and location-based attention to select
collections of interest, computing one of many potential properties
of that collection, and comparing that property (e.g., height, size,
heterogeneity) to that of another collection. Are these stages serial
(Huang & Pashler, 2007; Levinthal & Franconeri, 2011), or can
they progress simultaneously for multiple collections at once (Hal-
berda et al., 2006)? Making progress on such questions would
plant a researcher firmly in Pasteur’s Quadrant (Stokes, 1997),
simultaneously informing our broad understanding of how visual
attention works, while also having immediate translational impor-
tance to the outside world. There are several excellent examples in
the domain of data visualization (e.g., Healey, Booth, & Enns,
1996; Lam, Rensink, & Munzner, 2006), which is ripe for further
cross-disciplinary work.
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Sàenz, M., Buraĉas, G. T., & Boynton, G. M. (2003). Global feature-based
attention for motion and color. Vision Research, 43, 629–637. http://dx
.doi.org/10.1016/S0042-6989(02)00595-3

Slatcher, R. B., Selcuk, E., & Ong, A. D. (2015). Perceived partner
responsiveness predicts diurnal cortisol profiles 10 years later. Psycho-
logical Science, 26, 972–982.

Stokes, D. E. (1997). Pasteur’s quadrant: Basic science and technological
innovation. Washington, DC: Brookings Institution Press.

Szafir, D. A., Haroz, S., Gleicher, M., & Franconeri, S. (2016). Four types
of ensemble coding in data visualizations. Journal of Vision, 16, 11–11.
http://dx.doi.org/10.1167/16.5.11

Townsend, J. T. (1990). Serial vs. parallel processing: Sometimes they look
like Tweedledum and Tweedledee but they can (and should) be distin-
guished. Psychological Science, 1, 46–54. http://dx.doi.org/10.1111/j
.1467-9280.1990.tb00067.x

Treisman, A., & Gormican, S. (1988). Feature analysis in early vision:
Evidence from search asymmetries. Psychological Review, 95, 15–48.
http://dx.doi.org/10.1037/0033-295X.95.1.15

Tufte, E. R. (1990). Envisioning information. Cheshire, CT: Graphics
Press.

Tufte, E. R. (1983). The visual display of quantitative information (Vol. 2).
Cheshire, CT: Graphics Press.

Wang, Q., Cavanagh, P., & Green, M. (1994). Familiarity and pop-out in
visual search. Perception & Psychophysics, 56, 495–500. http://dx.doi
.org/10.3758/BF03206946

Ware, C. (2013). Information visualization: Perception for design. Am-
sterdam, The Netherlands: Elsevier.

Williams, R. (2014). The non-designer’s design Book (4th ed.). San Fran-
cisco, CA: Peachpit Press.

Wolfe, J. M. (1992). “Effortless” texture segmentation and “parallel”
visual search are not the same thing. Vision Research, 32, 757–763.
http://dx.doi.org/10.1016/0042-6989(92)90190-T

Wolfe, J. M., Cave, K. R., & Franzel, S. L. (1989). Guided search: An
alternative to the feature integration model for visual search. Journal of
Experimental Psychology: Human Perception and Performance, 15,
419–433. http://dx.doi.org/10.1037/0096-1523.15.3.419

Zhang, W., & Luck, S. J. (2009). Feature-based attention modulates feed-
forward visual processing. Nature Neuroscience, 12, 24–25. http://dx
.doi.org/10.1038/nn.2223

Received February 17, 2016
Revision received August 17, 2016

Accepted August 28, 2016 �

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

1676 NOTHELFER, GLEICHER, AND FRANCONERI

http://dx.doi.org/10.1167/11.14.10
http://dx.doi.org/10.1167/11.14.10
http://dx.doi.org/10.1093/acprof:osobl/9780199734337.003.0030
http://dx.doi.org/10.1111/j.1467-9280.2006.01746.x
http://dx.doi.org/10.1145/230562.230563
http://dx.doi.org/10.1145/230562.230563
http://dx.doi.org/10.1037/0033-295X.114.3.599
http://dx.doi.org/10.1037/0033-295X.114.3.599
http://dx.doi.org/10.3758/BF03194446
http://dx.doi.org/10.1037/xhp0000011
http://dx.doi.org/10.1037/xhp0000011
http://dx.doi.org/10.1177/0956797611418346
http://dx.doi.org/10.1177/0956797611418346
http://dx.doi.org/10.1037/h0023319
http://dx.doi.org/10.1037/h0023319
http://dx.doi.org/10.1162/jocn_a_00249
http://dx.doi.org/10.1162/jocn_a_00249
http://www.microsoft.com/en-us/news/bythenumbers/ms_numbers.pdf
http://www.microsoft.com/en-us/news/bythenumbers/ms_numbers.pdf
http://dx.doi.org/10.1016/0010-0285%2882%2990010-X
http://dx.doi.org/10.1016/0010-0285%2882%2990010-X
http://dx.doi.org/10.3758/BF03206778
http://dx.doi.org/10.3758/BF03210661
http://dx.doi.org/10.3758/BF03210661
http://dx.doi.org/10.3758/BF03194454
http://dx.doi.org/10.1038/nn876
http://dx.doi.org/10.1016/S0042-6989%2802%2900595-3
http://dx.doi.org/10.1016/S0042-6989%2802%2900595-3
http://dx.doi.org/10.1167/16.5.11
http://dx.doi.org/10.1111/j.1467-9280.1990.tb00067.x
http://dx.doi.org/10.1111/j.1467-9280.1990.tb00067.x
http://dx.doi.org/10.1037/0033-295X.95.1.15
http://dx.doi.org/10.3758/BF03206946
http://dx.doi.org/10.3758/BF03206946
http://dx.doi.org/10.1016/0042-6989%2892%2990190-T
http://dx.doi.org/10.1037/0096-1523.15.3.419
http://dx.doi.org/10.1038/nn.2223
http://dx.doi.org/10.1038/nn.2223

	Redundant Encoding Strengthens Segmentation and Grouping in Visual Displays of Data
	Experiment 1
	Method
	Participants
	Stimuli
	Procedure

	Results and Discussion

	Experiment 2
	Method
	Participants
	Stimuli
	Procedure

	Results and Discussion

	Experiment 3
	Method
	Participants
	Stimuli
	Procedure

	Results and Discussion

	Conclusion
	References


